Optimization over the Boolean Hypercube via Sums of Nonnegative Circuit Polynomials
نویسندگان
چکیده
Various key problems from theoretical computer science can be expressed as polynomial optimization problems over the boolean hypercube. One particularly successful way to prove complexity bounds for these types of problems are based on sums of squares (SOS) as nonnegativity certificates. In this article, we initiate the analysis of optimization problems over the boolean hypercube via a recent, alternative certificate called sums of nonnegative circuit polynomials (SONC). We show that key results for SOS based certificates remain valid: First, for polynomials, which are nonnegative over the $n$-variate boolean hypercube with constraints of degree $d$ there exists a SONC certificate of degree at most $n+d$. Second, if there exists a degree $d$ SONC certificate for nonnegativity of a polynomial over the boolean hypercube, then there also exists a short degree $d$ SONC certificate, that includes at most $n^{O(d)}$ nonnegative circuit polynomials.
منابع مشابه
Nonnegative Polynomials and Sums of Squares
A real polynomial in n variables is called nonnegative if it is greater than or equal to 0 at all points in R. It is a central question in real algebraic geometry whether a nonnegative polynomial can be written in a way that makes its nonnegativity apparent, i.e. as a sum of squares of polynomials (or more general objects). Algorithms to obtain such representations, when they are known, have ma...
متن کاملBoolean autoencoders and hypercube clustering complexity
We introduce and study the properties of Boolean autoencoder circuits. In particular, we show that the Boolean autoencoder circuit problem is equivalent to a clustering problem on the hypercube. We show that clustering m binary vectors on the n-dimensional hypercube into k clusters is NP-hard, as soon as the number of clusters scales like m (ε > 0), and thus the general Boolean autoencoder prob...
متن کاملDimensional Differences between Nonnegative Polynomials and Sums of Squares
We study dimensions of the faces of the cone of nonnegative polynomials and the cone of sums of squares; we show that there are dimensional differences between corresponding faces of these cones. These dimensional gaps occur in all cases where there exist nonnegative polynomials that are not sums of squares. As either the degree or the number of variables grows the gaps become very large, asymp...
متن کاملSparsity in sums of squares of polynomials
Representation of a given nonnegative multivariate polynomial in terms of a sum of squares of polynomials has become an essential subject in recent developments of sums of squares optimization and SDP (semidefinite programming) relaxation of polynomial optimization problems. We disscuss effective methods to obtain a simpler representation of a “sparse” polynomial as a sum of squares of sparse p...
متن کاملLower Bounds for Polynomials with Simplex Newton Polytopes Based on Geometric Programming
In this article, we propose a geometric programming method in order to compute lower bounds for real polynomials. We provide new sufficient conditions for polynomials to be nonnegative as well as to have a sum of binomial squares representation. These criteria rely on the coefficients and the support of a polynomial and generalize all previous ones by Lasserre, Ghasemi, Marshall, Fidalgo and Ko...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.10004 شماره
صفحات -
تاریخ انتشار 2018